Macroscopically-observable probability currents in finite populations
نویسندگان
چکیده
In finite-size population models, one can derive Fokker-Planck equations to describe the fluctuations of the species numbers about the deterministic behaviour. In the steady state of populations comprising two or more species, it is permissible for a probability current to flow. In such a case, the system does not relax to equilibrium but instead reaches a non-equilibrium steady state. In a two-species model, these currents form cycles (e.g., ellipses) in probability space. We investigate the conditions under which such currents are solely responsible for macroscopically-observable cycles in population abundances. We find that this can be achieved when the deterministic limit yields a circular neutrally-stable manifold. We further discuss the efficacy of onedimensional approximation to the diffusion on the manifold, and obtain estimates for the macroscopically-observable current around this manifold by appealing to Kramers’ escape rate theory.
منابع مشابه
Macroscopic Consequences of Demographic Noise in Non-Equilibrium Dynamical Systems
For systems that are in equilibrium, fluctuations can be understood through interactions with external heat reservoirs. For this reason these fluctuations are known as thermal noise, and they usually become vanishingly small in the thermodynamic limit. However, many systems comprising interacting constituents studied by physicists in recent years are both far from equilibrium, and sufficiently ...
متن کاملLorenzian analysis of infinite poissonian populations and the phenomena of Paretian ubiquity
CT ED P RO O Abstract The Lorenz curve is a universally calibrated statistical tool measuring quantitatively the distribution of wealth within human populations. We consider infinite random populations modeled by inhomogeneous Poisson processes defined on the positive half-line—the randomly scattered process-points representing the wealth of the population-members (or any other positive-valued ...
متن کاملQuantum phase slip phenomenon in ultra-narrow superconducting nanorings
The smaller the system, typically - the higher is the impact of fluctuations. In narrow superconducting wires sufficiently close to the critical temperature T(c) thermal fluctuations are responsible for the experimentally observable finite resistance. Quite recently it became possible to fabricate sub-10 nm superconducting structures, where the finite resistivity was reported within the whole r...
متن کاملDiscrimination of Inrush from Fault Currents in Power Transformers Based on Equivalent Instantaneous Inductance Technique Coupled with Finite Element Method
The phenomenon of magnetizing inrush is a transient condition, which occurs primarily when a transformer is energized. The magnitude of inrush current may be as high as ten times or more times of transformer rated current that causes malfunction of protection system. So, for safe running of a transformer, it is necessary to distinguish inrush current from fault currents. In this paper, an equiv...
متن کاملModeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver
The depth average module of NASIR finite volume solver was applied to study the tide induced currents in Khowr-e-Musa estuary. The model computes water level variation and velocity components in horizontal plane solving depth average continuity and momentum equations considering the hydrostatic pressure distribution. The software takes into account the bed and wall geometric complexities and re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013